Addition of angular momentum 2

In spherical coordinates

$$L_x = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right)$$

$$L_y = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right)$$

$$L_z = -i\hbar \frac{\partial}{\partial \phi}$$

and

$$L^2 = L_x^2 + L_y^2 + L_z^2 = -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right)$$

Recall that for spherical harmonic $Y_{lm}(\theta, \phi)$

$$L_z Y_{lm} = m\hbar Y_{lm}$$

Let χ_+ and χ_- be spin basis states such that

$$\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then for $\Psi = Y_{lm}\chi_+$ we have

$$J_z \Psi = L_z \Psi + S_z \Psi$$

$$= m\hbar \Psi + \frac{1}{2}\hbar \Psi$$

$$= \left(m + \frac{1}{2}\right)\hbar \Psi \tag{1}$$

and for $\Psi = Y_{lm}\chi_{-}$

$$J_z \Psi = L_z \Psi + S_z \Psi$$

$$= m\hbar \Psi - \frac{1}{2}\hbar \Psi$$

$$= \left(m - \frac{1}{2}\right)\hbar \Psi$$
(2)