ket0 = (1,0,0,0) ket1 = (0,1,0,0) ket2 = (0,0,1,0) ket3 = (0,0,0,1) phi(n,x) = sqrt(2 / L) sin(n pi x / L) -- numerical integrator N = 50 S(f) = (L/N)^2 sum(j,1,N,sum(k,1,N, test(j == k,0,eval(f,x,(j - 0.5) L/N,y,(k - 0.5) L/N)))) -- base units ampere = "ampere" kilogram = "kilogram" meter = "meter" second = "second" -- derived units coulomb = ampere second farad = ampere^2 kilogram^(-1) meter^(-2) second^4 joule = kilogram meter^2 second^(-2) volt = ampere^(-1) kilogram meter^2 second^(-3) -- physical constants hbar = 1.054572 10^(-34) joule second -- Planck's constant epsilon0 = 8.854188 10^(-12) farad / meter -- electric constant e = 1.602176 10^(-19) coulomb -- elementary charge me = 9.109382 10^(-31) kilogram -- mass of electron mp = 1.672622 10^(-27) kilogram -- mass of proton eV = 1/e coulomb "eV" / joule -- conversion constant pi = float(pi) -- use numerical value of pi "Length" L = 1.0 10^(-9) meter L "Kinetic energy" E(n) = n^2 pi^2 hbar^2 / (2 me L^2) eV Khat = E(1) outer(ket1,ket1) + E(2) outer(ket2,ket2) + (E(1) + E(2)) outer(ket3,ket3) Khat "Potential energy" psi = sqrt(1/2) (phi(1,x) phi(2,y) - phi(1,y) phi(2,x)) C = e^2 / (4 pi epsilon0) D = abs((x - y) / meter) meter -- trick to cancel meter inside abs f = conj(psi) psi / D V = C S(f) eV Vhat = V outer(ket3,ket3) Vhat "Total energy" Ehat = Khat + Vhat Ehat "Expected value for uniform distribution" c0 = 1/2 exp(i a0) c1 = 1/2 exp(i a1) c2 = 1/2 exp(i a2) c3 = 1/2 exp(i a3) xi = (c0,c1,c2,c3) dot(conj(xi),Ehat,xi)
Run